Investigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Electrical Power Systems
نویسندگان
چکیده
This paper consists of two sections: control and stabilizing method for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonics caused by the chaotic behaviour in current converter. For this work, a TimeDelayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mode is presented. This behaviour is demonstrated by presenting a piecewise linear discrete map for this converter and then combining the feedback equation to obtain the overall equation of the converter. A simple time-delay feedback control method is applied to stabilize the Unstable Periodic Orbits (UPOs). In second section the effect of a parallel Metal Oxide Arrester (MOV) on the ferroresonance oscillations of the transformer is studied. It is expected that the arresters generally cause ferroresonance drop out. Simulation has been done on a three phase power transformer with one open phase. Effect of varying input voltage has been studied. The simulation results reveal that connecting the arrester to the transformer poles, exhibits a great mitigating effect on ferroresonant over voltages. Phase plane along with bifurcation diagrams are also presented. Significant effect on the onset of chaos, the range of parameter values that may lead to chaos and magnitude of ferroresonant voltages has been obtained, shown and tabulated.
منابع مشابه
Investigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Two Electrical Power Systems: 1-Buck Converter2- Power Transformer
This paper consist of two sections: control and stabilizing approach for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonic caused by the chaotic behaviour in current converter. For this work, a Time- Delayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mo...
متن کاملLatency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
متن کاملInvestigating the Chaotic Nature of Flow the Upstream and Downstream of Zayandehrud-Dam Reservoir Using Chaotic Systems’ Criteria
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملConservative chaotic flow generated via a pseudo-linear system
Analysis of nonlinear autonomous systems has been a popular field of study in recent decades. As an interesting nonlinear behavior, chaotic dynamics has been intensively investigated since Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic systems have been ever reported in the literature, a systematic and qualitative approach for chaos generat...
متن کاملGlobal Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011